1、求極限
無論數(shù)學(xué)一、數(shù)學(xué)二還是數(shù)學(xué)三,求極限是高等數(shù)學(xué)的基本要求,所以也是每年必考的內(nèi)容。
區(qū)別在于有時(shí)以4分小題形式出現(xiàn),題目簡單;有時(shí)以大題出現(xiàn),需要使用的方法綜合性強(qiáng)。比如大題可能需要用到等價(jià)無窮小代換、泰勒展開式、洛比達(dá)法則、分離因式、重要極限等幾種方法,有時(shí)需要選擇多種方法綜合完成題目。
2、利用中值定理證明等式或不等式
利用中值定理證明等式或不等式,利用函數(shù)單調(diào)性證明不等式證明題雖不能說每年一定考,但也基本上十年有九年都會涉及。
3、求導(dǎo)
一元函數(shù)求導(dǎo)數(shù),多元函數(shù)求偏導(dǎo)數(shù)求導(dǎo)數(shù)問題主要考查基本公式及運(yùn)算能力,當(dāng)然也包括對函數(shù)關(guān)系的處理能力。
4、級數(shù)
級數(shù)問題常數(shù)項(xiàng)級數(shù)(特別是正項(xiàng)級數(shù)、交錯(cuò)級數(shù))斂散性的判別,條件收斂與絕對收斂的本質(zhì)含義均是考查的重點(diǎn),但常常以小題形式出現(xiàn)。
5、積分的計(jì)算
積分的計(jì)算包括不定積分、定積分、反常積分的計(jì)算,以及二重積分的計(jì)算,對數(shù)一考生來說常主要是三重積分、曲線積分、曲面積分的計(jì)算。
6、微分方程解常微分方程
微分方程解常微分方程方法固定,無論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運(yùn)算準(zhǔn)確性,在考場上正確運(yùn)算都沒有問題。
以上內(nèi)容來源網(wǎng)絡(luò),僅供參考!
以上是小編整理的關(guān)于【2024年考研數(shù)學(xué)高數(shù)六大常見題型解析】的全部內(nèi)容,如果想要了解更多關(guān)于院校選擇、專業(yè)選取、就業(yè)問題等,可直接點(diǎn)擊下方咨詢,由專業(yè)老師為您一對一解答!