大家都知道,考研就是千軍萬馬過獨(dú)木橋,掌握一手資料才能取得更大的優(yōu)勢,不知道23屆考研的同學(xué)們準(zhǔn)備得怎么樣了呢?今天,高頓小編為大家?guī)砹?strong>東華大學(xué)統(tǒng)計(jì)專碩核心考點(diǎn),那么一起來看看吧~
雖然23年的核心考點(diǎn)還沒出,但一般情況下與22年是不會有太大的差別的,一起來看看吧~
一、考查內(nèi)容(打*為新增內(nèi)容,不超過20分)
統(tǒng)計(jì)抽樣;
數(shù)據(jù)的預(yù)處理;
用圖和表展示數(shù)據(jù);
用統(tǒng)計(jì)量描述數(shù)據(jù)的水平:均值、中位數(shù)、四分位數(shù)、分位數(shù)和眾數(shù);
用統(tǒng)計(jì)量描述數(shù)據(jù)的差異:極差、樣本方差、樣本標(biāo)準(zhǔn)差;
樣本協(xié)方差與樣本相關(guān)系數(shù);
*Excel描述統(tǒng)計(jì)。
事件的關(guān)系和運(yùn)算;
概率的定義與性質(zhì);
古典概型與幾何概型;
條件概率、乘法公式、全概率公式和貝葉斯公式;
事件的獨(dú)立性。
隨機(jī)變量和分布函數(shù);
離散型隨機(jī)變量的分布律和分布函數(shù);
連續(xù)型隨機(jī)變量的概率密度函數(shù)和分布函數(shù);
多維離散型隨機(jī)變量的聯(lián)合分布律、邊緣分布率、條件分布律;
*多維隨機(jī)變量的聯(lián)合分布函數(shù)和邊緣分布函數(shù);
*多維連續(xù)型隨機(jī)變量的聯(lián)合密度函數(shù)、邊緣密度函數(shù)、條件密度函數(shù);
*隨機(jī)變量函數(shù)的分布;
隨機(jī)變量的獨(dú)立性;
隨機(jī)變量的期望與方差;
隨機(jī)變量函數(shù)的期望;期望和方差的性質(zhì);
切比雪夫不等式;
協(xié)方差與相關(guān)系數(shù)。
伯努利分布、二項(xiàng)分布、泊松分布;
*幾何分布與超幾何分布;
均勻分布、指數(shù)分布、正態(tài)分布;
*二維均勻分布與二維正態(tài)分布;
卡方分布、t分布和F分布;
*Excel概率分布和分位數(shù)計(jì)算。
簡單隨機(jī)抽樣;
正態(tài)總體的抽樣定理;
辛欽大數(shù)定律與伯努利大數(shù)定律;
蒙特卡羅算法;
*Excel實(shí)現(xiàn)蒙特卡羅算法;
中心極限定理,二項(xiàng)分布的正態(tài)近似;
*離散變量的連續(xù)修正;
大樣本均值的近似分布。
點(diǎn)估計(jì)的概念;
*矩估計(jì)法;
估計(jì)量的性質(zhì);
最大似然估計(jì);
置信區(qū)間的概念;
一個(gè)總體均值的區(qū)間估計(jì);
*一個(gè)正態(tài)總體方差的區(qū)間估計(jì);
*兩個(gè)正態(tài)總體參數(shù)的區(qū)間估計(jì);
樣本量的確定。
假設(shè)檢驗(yàn)的基本原理;
統(tǒng)計(jì)推斷中的兩類錯誤;
臨界值判別法與p值判別法;
一個(gè)總體均值的假設(shè)檢驗(yàn);
*成對樣本均值差的假設(shè)檢驗(yàn);
*一個(gè)正態(tài)總體方差的假設(shè)檢驗(yàn);
*兩個(gè)正態(tài)總體參數(shù)的假設(shè)檢驗(yàn)。一元線性回歸模型;
回歸模型的方差分析和假設(shè)檢驗(yàn);
回歸模型的參數(shù)估計(jì);
回歸預(yù)測。
初試參考書: 東華大學(xué)概率統(tǒng)計(jì)教研組,概率論與數(shù)理統(tǒng)計(jì),高等教育出版社,2017(*含網(wǎng)上資料內(nèi)容)
以上就是【東華大學(xué)統(tǒng)計(jì)專碩核心考點(diǎn)】的解答,如果你想要學(xué)習(xí)【考研專業(yè)】更多這方面的知識,歡迎大家前往高頓考研考試頻道!
 
2023年考研備考資料下載> >
相關(guān)閱讀
· 23金融考研擇校之中山大學(xué)
· 23金融考研擇校之上海交通大學(xué)
延伸閱讀
· 想考北大金融碩士?這幾點(diǎn)你必須知道
·考研報(bào)名費(fèi)用大概是多少?(A區(qū))