FRM的考試中,包含了一些概率論和統(tǒng)計學相關的內(nèi)容,因此,有一些統(tǒng)計模擬方法需要考生來掌握。蒙特卡羅方法就是FRM考試的考點之一,接下來,高頓網(wǎng)校FRM小編就為大家簡單介紹一下。
  蒙特·卡羅方法(Monte Carlo method),也稱統(tǒng)計模擬方法,是二十世紀四十年代中期由于科學技術的發(fā)展和電子計算機的發(fā)明,而被提出的一種以概率統(tǒng)計理論為指導的一類非常重要的數(shù)值計算方法。是指使用隨機數(shù)(或更常見的偽隨機數(shù))來解決很多計算問題的方法。與它對應的是確定性算法。蒙特·卡羅方法在金融工程學,宏觀經(jīng)濟學,計算物理學(如粒子輸運計算、量子熱力學計算、空氣動力學計算)等領域應用廣泛。
  基本思想
  當所求解問題是某種隨機事件出現(xiàn)的概率,或者是某個隨機變量的期望值時,通過某種“實驗”的方法,以這種事件出現(xiàn)的頻率估計這一隨機事件的概率,或者得到這個隨機變量的某些數(shù)字特征,并將其作為問題的解。
  解題過程
  蒙特卡羅方法的解題過程可以歸結為三個主要步驟:構造或描述概率過程;實現(xiàn)從已知概率分布抽樣;建立各種估計量。
  蒙特卡羅方法解題過程的三個主要步驟:
 ?。?)構造或描述概率過程
  對于本身就具有隨機性質(zhì)的問題,如粒子輸運問題,主要是正確描述和模擬這個概率過 程,對于本來不是隨機性質(zhì)的確定性問題,比如計算定積分,就必須事先構造一個人為的概率過程,它的某些參量正好是所要求問題的解。即要將不具有隨機性質(zhì)的問題轉化為隨機性質(zhì)的問題。
 ?。?)實現(xiàn)從已知概率分布抽樣
  構造了概率模型以后,由于各種概率模型都可以看作是由各種各樣的概率分布構成的,因此產(chǎn)生已知概率分布的隨機變量(或隨機向量),就成為實現(xiàn)蒙特卡羅方法模擬實驗的基本手段,這也是蒙特卡羅方法被稱為隨機抽樣的原因。最簡單、最基本、最重要的一個概率分布是(0,1)上的均勻分布(或稱矩形分布)。隨機數(shù)就是具有這種均勻分布的隨機變量。隨機數(shù)序列就是具有這種分布的總體的一個簡單子樣,也就是一個具有這種分布的相互獨立的隨機變數(shù)序列。產(chǎn)生隨機數(shù)的問題,就是從這個分布的抽樣問題。在計算機上,可以用物理方法產(chǎn)生隨機數(shù),但價格昂貴,不能重復,使用不便。另一種方法是用數(shù)學遞推公式產(chǎn)生。這樣產(chǎn)生的序列,與真正的隨機數(shù)序列不同,所以稱為偽隨機數(shù),或偽隨機數(shù)序列。不過,經(jīng)過多種統(tǒng)計檢驗表明,它與真正的隨機數(shù),或隨機數(shù)序列具有相近的性質(zhì),因此可把它作為真正的隨機數(shù)來使用。由已知分布隨機抽樣有各種方法,與從(0,1)上均勻分布抽樣不同,這些方法都是借助于隨機序列來實現(xiàn)的,也就是說,都是以產(chǎn)生隨機數(shù)為前提的。由此可見,隨機數(shù)是我們實現(xiàn)蒙特卡羅模擬的基本工具。
 ?。?)建立各種估計量
  一般說來,構造了概率模型并能從中抽樣后,即實現(xiàn)模擬實驗后,我們就要確定一個隨機變量,作為所要求的問題的解,我們稱它為無偏估計。建立各種估計量,相當于對模擬實驗的結果進行考察和登記,從中得到問題的解。
  數(shù)學應用:
  通常蒙特·卡羅方法通過構造符合一定規(guī)則的隨機數(shù)來解決數(shù)學上的各種問題。對于那些由于計算過于復雜而難以得到解析解或者根本沒有解析解的問題,蒙特·卡羅方法是一種有效的求出數(shù)值解的方法。一般蒙特·卡羅方法在數(shù)學中最常見的應用就是蒙特·卡羅積分。