Copyright ? 2006-2024 高頓教育, All Rights Reserved. 網(wǎng)站地圖
老師,這個第五題為什么不用考慮10%的公積?
同學(xué)你好,利潤留存包括盈余公積,按照凈利潤的10%提取盈余公積金,當(dāng)留存利潤不足以提取盈余公積金的情況下,才需要強制留存更多的利潤。本題中盈余公積金為200萬,但是根據(jù)計算留存的利潤為1680萬,高于需要提取的盈余公積金,所以不需要再多硫留存200萬的利潤,因此2010年可以發(fā)放的股利=2000-1680=320萬。
以上供參考,祝備考順利。
同學(xué)你好,根據(jù)題意,留存的利潤已經(jīng)有一千多萬了,早已超過規(guī)定的盈余公積比例,所以無需再增加200萬的利潤留存。你可以理解為盈余公積是留存利潤的一部分。當(dāng)留存利潤超過盈余公積時(即凈利潤的10%)就說明盈余公積已經(jīng)完成留存了。
盈余公積就是為了防止公司把利潤全部發(fā)給股東,所以要求強制留存利潤至少10%,本題中留存利潤遠(yuǎn)超10%。
同學(xué)你好,題目中給出2011年公司需要增加投資2800萬,所以不會將所有利潤都通過股利發(fā)放給股東。
在一般情況下公司也會留存利潤進(jìn)行再投資,不會一點利潤都不留存的。
同學(xué)你好,求最大可用于支付股利的額度,即將990萬可用投資投資于項目中使得公司利潤最大化,
由于5個項目不可分割,990萬僅可以選擇兩個項目,根據(jù)資金利用率和收益率的綜合評價,選擇項目B加C為最優(yōu),其實現(xiàn)的收益為162.716萬元
支付14%的資金成本22.78后可供支付股利的最大額度為139.936萬元。
以上供參考,祝備考順利。
同學(xué)你好,通過相加并對比,990萬額度僅夠投資兩個項目,綜合比較資金使用率和收益率選擇B、C兩項目。
B項目收益370*22%=81.4萬,C項目收益580*14.02%=81.316萬,收益共計81.4+81.316=162.716萬元。
資金成本14%共22.78萬元,因此可供支付股利的最大額度=162.716-22.78=139.936萬元。
以上供參考,祝備考順利。
老師這里的資本公積為什么不是650000?...
資本公積是指直接繳入權(quán)益資本中超過股票面值的部分,能舉個例子...
請問這里的實收資本和資本公積為什么每年不發(fā)生變化...
資本公積38元哪來的...
老師,我國法律不允許企業(yè)使用股本和資本公積發(fā)放股利,那是不是...
中國對于送股或者轉(zhuǎn)增股的會計處理方法應(yīng)該不涉及資本公積的增加...
資本公積以及他和資本盈余的關(guān)系...
老師,請問資本公積金和未分配利潤在股票股利和股票回購時會怎么...
每股凈資產(chǎn)包括每股公積金和每股未分配利潤。每股凈資產(chǎn)=期末普通股凈資產(chǎn)/期末發(fā)行在外的普通股股數(shù)。期末普通股凈資產(chǎn)=期末股東權(quán)益-期末優(yōu)先股股東權(quán)益。
資本公積轉(zhuǎn)增資本屬于原資本溢價部分可以轉(zhuǎn)增資本且不涉及企業(yè)所得稅情形。資本公積轉(zhuǎn)增資本的會計分錄:借:資本公積——資本溢價;貸:實收資本(股本)。
非股份有限公司接受投資者投入資產(chǎn)的金額超過投資者在企業(yè)注冊資本中所占份額的部分,通過“資本公積—資本溢價”科目核算。
教師回復(fù): 是這么理解的:正項級數(shù)收斂就意味著它們加起來是等于一個常數(shù)的,而偶(奇)數(shù)項只是正項級數(shù)的一部分,那么它們加起來肯定也是一個常數(shù),所以是收斂的。嚴(yán)格的證明需要按照正項級數(shù)收斂的定義,用單調(diào)有界定理來證明。
教師回復(fù): 這里應(yīng)該套用的是ln1+x的公式,因為x趨于0的,然后可以把-x帶入
教師回復(fù): 可以按照這個來理解因為AB=0,所以矩陣B的列向量都是線性方程組AX=0的解;則矩陣B的列向量組的秩,不大于方程組AX=0的基礎(chǔ)解系的個數(shù),也就是說矩陣B的列向量組可以由AX=0 的基礎(chǔ)解系線性表示,所以R(B) <= n-R(A),故R(A)+R(B)小于等于n。
教師回復(fù): 這是個感嘆句,使用了倒裝,順過來說是 a day makes a difference. 某一天產(chǎn)生了重要的作用/ 某一天發(fā)生了一個變化。 用感嘆語氣,則是 某一天產(chǎn)生了多么大變化啊?。骋惶旌推綍r非常不一樣);翻譯則調(diào)整表達(dá)為: 多么與眾不同的一天??! 多么特別的一天??!
教師回復(fù): 題里面如果讓你求得一個正交矩陣的話,就一定要正交化和單位化如果求正交矩陣,所求的特征向量天然正交,就不需要正交化只單位化就可以了如果題目只要求一個可逆矩陣的話,就不需要正交化和單位化